NC Algorithms for Comparability Graphs Interval Graphs and Unique Perfect Matchings
نویسندگان
چکیده
Laszlo Lovasz recently posed the following problem Is there an NC algorithm for testing if a given graph has a unique perfect match ing We present such an algorithm for bipartite graphs We also give NC algorithms for obtaining a transitive orientation of a com parability graph and an interval representation of an interval graph These enable us to obtain an NC algorithm for nding a maximum matching in an incomparability graph
منابع مشابه
Perfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملSome perfect matchings and perfect half-integral matchings in NC
We show that for any class of bipartite graphs which is closed under edge deletion and where the number of perfect matchings can be counted in NC, there is a deterministic NC algorithm for finding a perfect matching. In particular, a perfect matching can be found in NC for planar bipartite graphs and K3,3-free bipartite graphs via this approach. A crucial ingredient is part of an interior-point...
متن کاملThe Polynomially Bounded Perfect Matching Problem Is in NC 2
The perfect matching problem is known to be in ¶, in randomized NC, and it is hard for NL. Whether the perfect matching problem is in NC is one of the most prominent open questions in complexity theory regarding parallel computations. Grigoriev and Karpinski [GK87] studied the perfect matching problem for bipartite graphs with polynomially bounded permanent. They showed that for such bipartite ...
متن کاملNC Algorithms for Perfect Matching and Maximum Flow in One-Crossing-Minor-Free Graphs
In 1988, Vazirani gave an NC algorithm for computing the number of perfect matchings in K3,3-minor-free graphs by building on Kasteleyn’s scheme for planar graphs, and stated that this “opens up the possibility of obtaining an NC algorithm for finding a perfect matching in K3,3-free graphs.” In this paper, we finally settle this 30-year-old open problem. Building on the recent breakthrough resu...
متن کاملMatchings in Graphs
We know that counting perfect matchings is polynomial time when we restrict ourselves to the class of planar graphs. Generally speaking, the decision and search versions of a problem turn out to be “easier” than the counting question. For example, the problem of determining if a perfect matching exists, and finding one when it does, is polynomial time in general graphs, while the question of co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1985